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Abstract

In this paper, we present a model of ‘collective innovation’ built upon
the network formation formalism. In our model, agents localized on a
circle benefit from knowledge flows from other agents with whom they
are directly or indirectly connected. They support costs for direct con-
nections which are linearly increasing with geographic distance. The dy-
namic process of network formation exhibits preferential meeting for close
agents (in the relational network and in the geographic metrics). We show
how the set of stochastically stable networks selected in the long run is
affected by the degree of knowledge transferability. We find critical values
of this parameter for which stable “small world” networks are dynamically
selected.

Classification Codes: C62, C63, C70, L20, O31, R10
Keywords: Network Formation, Preferential Meeting, Innovation,

Small-Worlds
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1. Introduction

A growing body of empirical literature is concerned with the influence of
network relations on firms rates of innovation. Far from being the outcome of
isolated agents efforts, innovation is usually described as a collective and in-
teractive process (e.g. von Hippel, 1989). Allen (1983) puts in evidence those
characteristics focusing on what he calls the ‘collective invention’ phenomenon.
According to him, it occurs when social interactions generate knowledge dis-
closure between agents belonging to competing firms which in turn stimulates
incremental innovation. Powell et al. (1996) also emphasize the role of networks
as a source of innovation, improving and facilitating information and knowledge
transfers: “a network serves as a locus of innovation because it provides timely
access to knowledge and resources that are otherwise unavailable” (Powell et
al., 1996).

Another body of empirical analyses highlights that the “local milieu” plays
an important role in favoring knowledge diffusion (Antonelli, 1999). Many em-
pirical studies show that innovation activities are spatially clustered and benefit
from localized knowledge spillovers (Feldman, 1994; Audretsch, 1998). Saxenian
(1994) shows that in the Silicon Valley, it is a dense social network stimulated by
an open local labor market which promotes collective learning among competing
firms through collaborations or informal communication. Nevertheless, making
use of a network approach, she provides qualitative evidence showing that, de-
spite similar origins and technologies, Silicon Valley and Route 128 followed
very distinct evolution trajectories. The example of Route 128 demonstrates
that geographic clustering is not a sufficient condition to ensure the emergence
of regional networks. Thus, geographic proximity can only be considered as an
imperfect proxy to capture the existence of network relations which generate
knowledge spillovers (Breschi and Lissoni, 2003). On the other way on, geo-
graphic space should be considered as non neutral for the process of network
formation: thus the “milieu” and the network (when it exists) are likely to
overlap.

This paper aims to study ‘collective innovation’ in a model of network for-
mation, where myopic self-interested agents benefit from knowledge flows from
agents with whom they interact either directly or indirectly. We make the
assumption that the higher the distance in the relational network the weaker
the spillover. In other words, we consider that a decay is affecting knowledge
diffusion. The agents support costs for direct connections which are linearly
increasing with geographic distance separating them. The main concern is the
dynamic formation of networks. Indeed, if several previous theoretical works
focus on how network structures matter for innovation dynamics through infor-
mation, knowledge or technology diffusion (for example, David and Foray, 1994;
Valente, 1996; Cowan and Jonard, 2001; Young, 2002), they are not concerned
with network formation which remains a crucial issue for knowledge dynamics
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and innovation1. This question is of interest: if the network structure has obvi-
ously much to say about innovative performance, then one may naturally wonder
about the circumstances that allow various network structures to emerge. Thus,
a “self-organization” perspective2 is chosen to study the emergence of networks
and its co-evolution with knowledge diffusion. In particular, we focus on how
network selection is affected by the easiness of knowledge flows (i.e. by the
decay).

Directly related to this work are the recent formal economic contributions
highlighting how (both individual and collective) behaviors and performances
are grounded in networks, which are often in turn shaped by agents3. The very
originality of this approach is the focus on network formation. A theoretical
framework has been proposed by Jackson and Wolinski (1996) based on a two-
sided network formation game4. Concepts of (myopic and pairwise) stability
and of efficiency have been introduced in this framework. This contribution also
constitutes an important point of departure to analyze and model endogenously
emerging structures.

Jackson and Watts (2002) (initiated in Watts, 2001) have developped the
dynamics of that approach by introducing the notion of stochastically stable
networks based on notions and results initially proposed by Young (1993) and
Kandori et al. (1993). To study the dynamic formation of networks, we make
use of their stochastic Markov process. More precisely, they introduced random
errors which invert agents’ right decisions in creating, maintaining or deleting
links. While following their contribution, our model departs from theirs in that
we enrich the meeting process. We introduce a preferential meeting process
which governs the dynamic process of links formation, assuming that agents
meet easily other agents in their neighborhood. This way we simply reject the
uniform meeting probability and weight the probability that two unconnected
agents meet with both the inverse of their distance (on both metrics: the rela-
tional and the geographic ones). We expect that the underlying Markov chain
will select pairwise equilibria that have some in common with the empirical
literature on networks.

1Cowan and Jonard (2001) study the impact of network architectures on knowledge dif-
fusion and show that knowledge grows at different rates depending on them. This model
has been extended in Cowan et al. (2002) who model agents matching with each other to
combine their knowledge to innovate. Nevertheless, the networks formation is only captured
by cumulative frequency matrices which constitute the “trace” of ponctual interactions.

2 See for example Lesourne and Orléan (1998) and Paulré (1997) for some insights on the
concept of “self-organization”.

3Predictions concern various contexts such as information diffusion on job opportunities
(Calvó-Armengol and Jackson, 2001; Tesfatsion, 2001; Calvó-Armengol, 2003), firms’ design
(Radner, 1993; Bolton and Dewatripont, 1996, Guimerà et al., 2001), R&D collaborations
(Goyal and Joshi, 2000; Goyal and Moraga, 2001), market organization (Weisbuch et al.,
2000), etc.

4Their approach is also usually called “mixed approach” since it is half way between the
cooperative (Slikker and van den Nouweland, 2000) and the non-cooperative ones (Bala and
Goyal, 2000). More precisely, it assumes that two agents have to agree simultaneously to
become directly connected while only one defection breaks an existing link.
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This way we come to another body of literature which emerged recently in
Physics dealing with the structure of large networks as evidenced by web sites
links, relational networks, coauthoring scientific papers (Barabási and Albert,
1999, 2000; Watts and Strogatz 1998; Newman et al., 2001)5. The general
conclusions of this literature are that such networks are highly clustered and
exhibit some long distant connections67 . Such structures are usually called
small worlds because despite a very large number of nodes (agents) the average
distance between them is usually small (known as the “six degree of separation”,
Milgram, 1963).

Doing this, we finally face another issue, namely the characterization of
equilibrium networks for which the economic literature on network formation
has not dedicated much attention, focusing mainly on the compatibility between
networks efficiency and stability (Jackson, 2003). The typical network structures
discussed in this framework are the cycle, the empty network, the star, and the
complete network. Here, the selected equilibria we obtain cannot fall anymore
systematically under these usual categories. Therefore, we make use of several
indexes that capture interesting features of the graphs. We show that different
values of the knowledge transferability parameter generate qualitatively different
network architectures. In particular we find that for critical values of the decay
in knowledge spillover parameter the stochastic process selects pairwise stable
small worlds networks in the long run.

The paper is organized as follows. Section 2 presents the static features of our
‘collective innovation’ model in the network formation formalism and introduces
indexes used to characterize networks. Section 3 is devoted to the dynamics,
highlighting the preferential meeting rule we propose and the generic properties
of the stochastic process. The results obtained are presented in Section 4. The
last section concludes.

5As a matter of fact, our preferential meeting rule has some in common with the so called
“preferential attachment” process which has recently been highlighted as crucial for generating
networks characterized by skew vertices distribution. Several models have been introduced:
Barabási et al. (2001), Yook et al. (2001), Jeong et al. (2003), Bianconi and Barabási
(2001), Newman (2001) and, for a complete review, Albert and Barabási (2002). However
these models propose a poor description of agents behaviors.

6Those non local, distant connections can be viewed as “weak ties” as described by Gra-
novetter (1973).

7These two features characterize small worlds à la Watts and Strogatz (1998). Another
general result of that literature is that the nodes degree distribution is usually quite skew.
This last result comes from the scale free networks approach (Barabási and Albert, 1999,
2000). In this paper, we do not concentrate on that issue which should be extensively studied
in a forthcoming dedicated work.
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2. The ‘collective innovation’ model in the net-
work formation formalism

The point of departure of our model is the network formation formalism
introduced by Jackson and Wolinski (1996). Consider a finite set of n agents,
N = {1, 2, ..., n} with n ≥ 3, and let i and j be two members of this set. Each
agent is assumed to increase its knowledge through internal capacities and/or by
communicating directly through costly relationships with other agents. Direct
connections between agents, which are called pairwise links since the willingness
of both the two agents is necessary to establish and maintain a link, form the
relational network which is represented as a non-directed graph. In this model,
agents can also benefit from indirect (and costless) connections, through the
relational network of their partners, but in a decreasing manner i.e. the benefits
deteriorate with the relational distance. We then consider that the rate at which
agents innovate is deduced from their knowledge accumulation rate which is in
turn obtained through their relations network.

We begin with some basic notions in network formation. We then turn to the
description of the innovation process through knowledge diffusion and accumula-
tion resulting from internal capacities and from direct and indirect connections
that allow the absorption of knowledge. Finally, we introduce several graph
indexes which can be used to characterize various networks architectures.

2.1. Basic notions in network formation

2.1.1. Properties and typical structures of graphs

Consider a finite set of n agents, N = {1, 2, ..., n} with n ≥ 3, and let i
and j be two members of this set. Agents are represented by the nodes of a
non-directed graph which edges represent the links between them. The graph
constitutes the relational network between the agents. A link between two
distinct agents i and j ∈ N is denoted ij. A graph g is a list of non ordered
pairs of connected and distinct agents. Formally, {ij} ∈ g means that ij exists
in g. We define the complete graph gN = {ij | i, j ∈ N} as the set of all subsets
of N of size 2, where all players are connected with all the others. Let g ⊆ gN

be an arbitrary collection of links on N . We define G =
©
g ⊆ gN

ª
as the finite

set of all possible graphs between the n agents.

Let g0 = g + ij = g ∪ {ij} and g00 = g − ij = g\ {ij} be respectively the
graph obtained by adding ij and the one obtained by deleting ij to the existing
graph g. The graphs g and g0 are said to be adjacent as well as the graphs g
and g00. For any g, we define N(g) = {i | ∃j : ij ∈ g}, the set of agents who
have at least one link in the network g. We also define Ni(g) as the set of
neighbors agents i has, that is: Ni(g) = {j | ij ∈ g} . The cardinal of that set
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ηi(g) = #Ni(g) is called the degree of node i. The total number of links in the
graph g is η(g) = #g = 1

2

P
i∈N ηi(g), while the average number of neighbors is

given by η(g) = 2η(g)/n.

A path in a non empty graph g ∈ G connecting i to j, is a sequence of
edges between distinct agents such that {i1i2, i2i3, ..., ik−1ik} ⊂ g where i1 = i,
ik = j. The length of a path is the number of edges it contains. Let i ←→g j
be the set of paths connecting i and j on graph g. The set of shortest paths
between i and j on g noted ig←→gj is such that if ∀k ∈ ig←→gj; implies that
k ∈ i←→ j and#k = minh∈i←→gj#h. We define the geodesic distance between
two agents i and j as the number of links of the shortest path between them:
d(i, j) = dg(ij) = #k ∈ ig←→gj. When there is no path between i and j then
their geodesic distance is conventionally infinite: d(i, j) =∞.

An external metric is also introduced, representing for example, the geo-
graphic position of agents (Johnson and Gilles, 2000). Such external metrics
defines a new distance operator denoted d0(i, j). In our model, we consider that
agents are located on a circle (or a ring). Without loss of generality, agents
are assumed to be ordered according to their index, such that i ∈ N(i − 1)
and i ∈ N(i + 1) but agent 1 and agent n who are neighbors. The geographic
distance may simply be obtained by d0(i, j) = min {|i− j| ;n− |i− j|} .

Finally, a graph g ⊆ gN is said to be connected if there exists a path between
any two vertices of g. The subgraph g0 ⊂ g is a connected component of g, if:
- for all i ∈ N(g0) and j ∈ N(g0) with i 6= j, there exists a path in g0

connecting i and j and,
- if i ∈ N(g0) and j /∈ N(g0), with i 6= j, there doesn’t exist a path in g0

connecting i and j.
The set of all components of g is denoted by C(g) such that: g = ∪g0∈C(g)g0

(a component cannot consist in an isolated agent who has no links).

Several typical graphs can be described. Let i, j ∈ N . First of all, the empty
graph, denoted g∅, is such that it does not contain any links. We call a network
g ∈ G a ring if g is connected and if :
- for all i < j : ij ∈ g, there does not exist h such that i < h < j and
- for all i > j : ij ∈ g, there does not exist h such that j < h < i.
Such a graph is denoted g◦. It is a regular network of order k = 1, in which

all agents are connected and only connected with their two closest geographic
neighbors. The double ring denoted g2◦ is a regular network of order k = 2
such that all agents are connected and only connected with their four closest
neighbors. Finally, a non empty graph g ∈ G is a (complete) star, denoted gB,
if there exists i ∈ N such that if jk ∈ gB, then either j = i or k = i. Agent i is
called the center of the star. Notice that there are n possible stars, since every
node can be the center.

2.1.2. Network formation, stability and efficiency
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Over time, pairs of agents meet and decide to form, maintain or break links.
The formation of a link requires the consent of both the two agents but not its
deletion which can emanate from one of them unilaterally. Moreover, agents
are myopic which means that they take decisions on the basis of their impacts
only on their current payoffs i.e. according to the state of the current network.
Let πi (gt) be the individual payoffs that agent i receives from the graph gt.
Jackson and Wolinski (1996) introduce the notion of pairwise stability which can
be distinguished from the one of Nash equilibrium since the process of network
formation is both cooperative and non cooperative. The formal definition of
this notion is the following.

Definition 1. (Jackson and Wolinski, 1996) A network g ⊆ gN is pairwise
stable if:
(i) for all ij ∈ g, πi(g) ≥ πi(g − ij) and πj(g) ≥ πj(g − ij), and
(ii) for all ij /∈ g, if πi(g + ij) > πi(g) then πj(g + ij) < πj(g).

The efficiency of a network is computed by the total value of the correspond-
ing graph g, which is a function π :

©
g | g ⊆ gN

ª → R, with π(∅) = 0. At a
given period t, it is given by:

π (gt) =
P
i∈N

πi (gt) (1)

Definition 2. (Jackson and Wolinski, 1996) A network g ⊆ gN is effi-
cient if it maximizes the value function π(g) on the set of all possible graphs©
g | g ⊆ gN

ª
i.e. π(g) ≥ π(g0) for all g0 ⊆ gN .

2.2. Knowledge flows and innovation

2.2.1. Knowledge accumulation and (memoryless) innovation

Let us assume that the arrival of innovation follows a Poisson process which
is redrawn afresh at each period of the discrete time8. The arrival of innovations
is thus exponentially distributed and its rate is assumed to be a linear function of
knowledge accumulation. Such modeling is quite similar to the patent race one
presented in Dasgupta and Stiglitz (1980) or in Reinganum (1989) apart from the
fact that we are not interested in the ‘race’ dimension: The innovations are not
substitute but complement. Let kti denote agent i’s stock of knowledge at period
t. The instantaneous probability that i innovates when reaching any given level

8This assumption allows the Poisson process to be homogeneous and thus to preserve its
“memoryless” property that is simply having a constant hazard rate. Moreover, since the ex-
ponential cumulative density function is always concave, the instantaneous innovation proba-
bility (non conditioned on the information about previous non-innovation) exhibits decreasing
returns with the stock of knowledge. Thus, initializing the arrival rate at each period miti-
gates the consequences of that feature. A more complex and detailed version of the innovation
process is proposed in Carayol and Roux (2003a).
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k ∈ £kti ; kt+1i

£
of his stock of knowledge is given by the exponential density

function: P (ki = k) = λe−λk. The probability that agent i innovates reaching
the knowledge level k knowing that he has not innovated already (since the last
innovation on the unitary discrete period) is given by the following conditional
probability: qi = P {ki ∈ [k, k + dk] | ki > k} , which may be computed using
the well known memoryless property of the exponential distribution (having a
constant hazard rate), as follows:

qi =
P {ki ∈ [k, k + dk] , ki > k}

P (ki > k)
=

f(k)

(1− F (k))
= λ

Thus, the expected number of innovations generated by i during any unitary
period t is given by:

θti =

Z t+1

t

qik
τ
i dτ (2)

Having defined ∆kti =
R t+1
t

kτi dτ the knowledge variation over period t, one
clearly gets:

θti = λ∆kti (3)

2.2.2. Network and knowledge diffusion

Let us now turn toward describing how the knowledge is diffused through
the network connections. Let us assume that knowledge is accumulated both
through internal (fixed) capacities of the agent and through the direct and
indirect connections that allow him to absorb others’ (new) knowledge. Thus
the total knowledge accumulated at period t may be obtained as follows:

∆kti = ∆ki (gt) = ωi +
X
j∈N\i

δd(i,j)ωj (4)

where gt is the state of the current network (which is invariant on [t, t+ 1[), ωi
and ωj are respectively the knowledge created by agents i, j ∈ N during one
unitary period of time and which are assumed to be exogenous and constant
over time and agents. Thus the second component of the expression (4) is
traducing the flow of knowledge absorbed by i, which emanates simultaneously
from other agents j (assuming no time lag for simplicity), through direct and
indirect interconnections between i and agents j. Thus, parameter δ represents
the transferability factor that is the share of new knowledge produced which
is effectively directly or indirectly transmitted through each edge. Hence, we
assume that δ ∈ ]0, 1[ . For instance, if i and j are indirectly connected through
a third agent, each will get δ2 of the flow of knowledge each creates.

Let us now define the (expected) payoff function which is deduced from the
shape of the graph:

πti = θtiV − cti (5)
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where θti is the expected number of innovations seen above (3), V is the net
profit generated by an innovation and cti is the costs incurred by i, computed as
follows:

cti = ci (gt) = C +
X

j:ij∈gt
cd0 (i, j) (6)

It is thus potentially affected by a fixed cost and the costs spent for being
connected to his direct neighbors9.

The net profit generated by any agent i at period t, may be thus understood
as a function of the graph and the position i occupies in it. That value may
thus be written as πti = πi (gt) = π (∆ki (gt) , ci (gt)) . Compiling expressions (5)
(4) and (6) one gets:

πi (gt) = λV

ωi +
X
j∈N\i

δd(i,j)ωj

− C −
X

j:ij∈gt
cd0 (i, j) (7)

Remark 1. Our formulation of the payoff function is voluntarily very close
to the so-called “connections model” first introduced in Jackson and Wolinski
(1996). If we arbitrarily fix λ = 1/V, C = 0, and d0 (i, j) = 1,∀i, j, thus we have
the same formulation as theirs. Notice that if we have ωi = ωj = λV = C = 1,
then one gets the simple connections model which is well known in the network
formation literature. One can also observe that when reintroducing geographic
distance in link cost, then one obtains the same payoffs specification as the one
of Johnson and Gilles (2000), who first introduced some external metric (theirs
is the line instead as the circle in our model).

2.3. Networks characterization: some indexes

Finally, we introduce several indexes which may all together contribute to
improve the standard characterization of networks.

2.3.1. Expected efficiency

The social surplus generated by a network is generally computed by simply
adding individual payoffs. Thus the average social surplus is given by:

π(g) =
1

#N

X
i∈N

πi(g) (8)

9Relying on Debreu (1969) hypothesis according to which closely located players incur less
cost to establish communication, Johnson and Gilles (2000) have first extended the connections
model of Jackson and Wolinsky (1996) introducing a spatial cost topology in their network
formation approach. Links costs are increasing with geographic distance between agents. The
traditional assumption is that it’s less costly to establish and maintain relationships when
agents are geographicly close.
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We may be also interested in the overall allocation of payoffs, thus following
Cowan and Jonard (2001) we may compute the variance in individual payoffs
as follows:

var(π) =
1

#N

X
i∈N

[πi(g)− π(g)]
2 (9)

2.3.2. Direct connections and neighborhoods

Computing the average number of neighbors gives us a measure of the net-
work density :

η(g) =
1

#N

X
i∈N

ηi(g) (10)

The range of the network is a measure introduced by Goyal and Joshi (2002),
which is giving the gap between the biggest neighborhood and the smallest one:

R(g) = max
i∈N

ηi(g)−min
j∈N

ηj(g) (11)

Goyal and Joshi (2002) also proposed an index labeled unequal connections
which measures the average asymmetry between neighborhood size of directly
connected people. This index is given by:

u(g) =
2P

i∈N ηi(g)

X
ij∈g

¯̄
ηi(g)− ηj(g)

¯̄
(12)

2.3.3. Generic graph properties

Let us introduce the well known indexes of average path length and average
cliquishness introduced by Watts and Strogatz (1998) which are widely used in
the physics of networks literature.

The first one is simply computing the average distance of (directly or indi-
rectly) connected agents. It is given by:

d (g) ≡ 1

#N (#N − 1)
X
i∈N

X
j∈N\i:
∃i←→j⊂g

d (i, j) (13)

The average cliquishness indicates to what extent the neighborhoods of con-
nected people overlap ("the friends of my friends are my friends"). It is:

c (g) =
1

#N (#N − 1)
X
i∈N

X
jl:j,l∈Ni(g)

∆ (l, j)

ηi(g)
(14)

with ∆ (l, j) defines such that ∆ (l, j) ≡
½
1 if j ∈ Nl(g)
0 otherwise
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Finally a very interesting measure of the network structure is the full de-
scription of the degree distribution (edge distribution over the nodes population):
{nk, k = 0, 1, ..., n− 1}
with nk =

P
i∈N Θ (ηi(g), k) ; and Θ (ηi(g), k) ≡

½
1 if ηi(g) = k
0 otherwise

2.3.4. Geographic correlation

Lastly, we examine to what extent the geographic distances and the relational
connections overlap. Let us thus propose a geographic correlation index which
gives the geographic distance separating each direct connections in the network:

D(g) =
X
j:ij∈g

d0(i, j)
η(g)

(15)

3. Dynamic network formation

This section is dedicated to the presentation of our perturbed stochastic
process of network formation. We begin with the first step of the dynamic
settings, namely the meeting process. We will consider that the probability for
a given pair of unconnected agents to be selected is not fixed but varies across
agents according to their relative position on the current relational graph. Then,
we turn towards the last features of the dynamic process and present its generic
properties.

3.1. The preferential meeting process

In most of the works investigating the evolution of network (for example
in Watts, 2001; and Jackson and Watts, 2002), it is assumed that any pair of
agents have the same probability to meet at each period: it thus constitutes
an implicit assumption of an uniform meeting probability: ∀i, j ∈ N, pij = p.
This assumption is twofold: i) every pair of unconnected agents have the same
probability to meet; or ii) connected agents reconsider their relations at the
same frequency as unconnected ones do.

Here we reject the former part of the assumption while trying to preserve
the latter for symmetry reasons. Thus if we write P (Q) the probability that a
pair of agents chosen is unconnected (connected), we then assume that:

P =
X
ij /∈g

pij = 1−Q =
#gN − η(g)

#gN
(16)

Together, with considering that ∀ij ∈ g, pij = p, this implies that the prob-
ability that two connected agents meet at each period is such that p = 1

#gN
.
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Moreover, we do not consider that unconnected people may meet with con-
stant and time independent probabilities. Indeed, this assumption can be jus-
tified in the case of anonymous market interactions when the number of agents
considered is very large. Here, we introduce a preferential meeting process10 ,
considering that the probabilities for a pair of unconnected agents to be selected
is not independent across agents and vary according to their relative position on
the current relational graph. Hence, we consider that the less is the relational
distance between two unconnected agents, the greater will be the probability of
their selection. Moreover, we consider that this probability increases with their
geographic proximity, which is invariant. This ensures that the probability of
any two unconnected agents is never null (which is a necessary condition to
preserve the ergodicity property of the stochastic process presented below)11.

Formally, we introduce a preferential meeting process for unconnected agents
which is captured by the simple following formula:

ptij = d (i, j)
−γ
+ d0 (i, j)−β ,∀ij /∈ gt (17)

having introduced time superscripts, and where γ and β are two positive
parameters capturing the relative importance of relational indirect connections
and geographic proximity in the probability that two unconnected agents meet
each other. That expression is also subject to standard normalization, i.e. it is
normalized such that:

P
ij /∈gt p

t
ij =

#gN−η(gt)
#gN

.

3.2. The limit behavior of the perturbed stochastic process

The dynamic process can be described as follows. At each time period t, two
agents i and j ∈ N are selected by the preferential meeting process described
above. Then, if the selected two agents are directly connected, they can jointly
decide to maintain their relation or unilaterally decide to sever the link between
them. If they are not connected, they can jointly decide to form a link or
renounce unilaterally. Formally, those two situations are the following:
(i) if ij ∈ gt, the link is maintained if πi(gt) ≥ πi(gt − ij) and πj(gt) ≥

πj(gt − ij). Otherwise, the link is deleted.

10The notion of “preferential attachment” has been introduced in the model of Albert and
Barabási (1999) who rediscovered a process first suggested by Simon (1955). Albert and
Barabási show that in real networks, the likelihood of being connecting to a node depends on
the number of direct links of this node. However, the preferential attachment process they
describe is different of our preferential meeting process since they consider that the networks
evolution is built on the addition of new nodes which prefer to be linked to the nodes that have
more links. In other words, highly connected nodes increase their connectivity faster than their
less connected peers. For quantitative support on the presence of preferential attachment, one
can refer to Jeong et al. (2003) who provide some measurements on four networks (science
citation network, WWW, actor collaboration and science co-authorship network).
11 In a similar way (and for a similar reason), Vega-Redondo (2002) considers two possible

“routes of search” in the links formation process. The first is local that is mediated by the
social network while the second is said to be “global” since the meeting occurs between agents
in two different components of the network with a small probability.
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(ii) if ij /∈ gt, a new link is created if πi(gt + ij) ≥ πi(gt) and πj(gt + ij) ≥
πj(gt),with a strict inequality for one of them.

The stochastic process introduced here can be defined as a Markov chain
which finite states correspond to the “current” network at the end of a given
period. In other words, the state of the system at time t (with t = 0, 1, 2, ...)
is given by the graph structure gt ∈ G. The evolution of the system {gt, t ≥ 0}
can be described as a discrete-time stochastic process with state space G.

Following Jackson and Watts (2002), we then introduce small random per-
turbations ε (ε ∈ (0, a]) which invert agents’ right decisions in creating, main-
taining or deleting links. These perturbations may be understood as mistakes
or as mutations. The characterization of the asymptotic behavior of this process
is due to Young (1993). For small but non null values of ε (ε ∈ (0, a]), it can
be shown that the discrete-time Markov chain being irreductible and aperiodic,
has a unique corresponding stationary distribution. Such perturbed stochastic
processes are said to be ergodic. Intuitively ergodicity implies that it is possible
to transit directly or indirectly between any chosen pair of states in a poten-
tially very long period of time (which also means that any state of the system
can be directly or indirectly reached from any given one)12 . Moreover, when ε
goes to zero, the stationary distribution converges to a unique limiting station-
ary distribution. The states that are in the support of this limiting stationary
distribution are called stochastically stable and are either pairwise stable (cf.
Definition 1) either part of a close cycle of states13 . Notice that the ergodicity
property is quite interesting since it allows us to run numerical simulations in
order to examine the long run behavior of the system (Vega-Redondo, 2002):
we can then compute the unique limiting stationary distribution of the process.

4. Networks selection in the simple collective
innovation model: the results
In this section, we present the results obtained for a simplified version of the

collective innovation model presented in Section 2. As it is explained in Remark
1, our general model (7) may be simplified to obtain the following specification
of the profit function which from now on becomes our basic profit equation:

πi (gt) =
X
j∈N\i

δd(i,j) − c
X

j:ij∈gt
d0 (i, j) (18)

12 It allows the long run state of the system to become independent of its initial conditions.
Indeed, processes that are non-ergodic are said to be “path dependent” (David, 1985) since
their limiting behavior is dependent on the initial state of the system.
13Such process is called a regular perturbation of the initial stochastic process (without

trembles). Definitions, properties and some proofs are examined in Carayol and Roux (2003b).
Initial contributions are the ones of Freidlin and Wentzell (1984), Young (1993), Kandori et
al. (1993), and Jackson and Watts (2002).
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Let recall that in this model, agents ares located on a circle. Moreover, for
simplification purposes, we will consider that c = 2

n for even values of n, and
c = 2

n−1 , otherwise
14. Recall also that the dynamic process used is based on

the preferential meeting principle introduced in Section 3. For simplification
purposes again, we use a simple rule assuming that γ = β = 1. Meeting rule
before normalization (17) then becomes:

ptij =
1

d (i, j)
+

1

d0 (i, j)
,∀ij /∈ gt (19)

We next propose to numerically simulate the unique limiting stationary dis-
tribution of the perturbed dynamic process of Jackson and Watts (2002) (for
which the error term is decreasing down to zero) by the following simple rule:

εt =

½
0.02 if t < 50
1/t otherwise

(20)

Thus we ensure that errors affect the dynamics while it is decreasing down to
zero when time increases: limt→∞ εt = 0.

In the following subsection we study the limit distribution of states and show
that small world-like networks may be selected through the process of network
formation. Secondly, we propose a more systematic analysis of how network
architecture varies with the decay parameter δ, that is how network selection is
affected by the easiness of knowledge flows on networks.

4.1. Limit networks selection: the emergence of small worlds

The first goal is to study the limit distribution of the process in one simple
numerical situation. For that purpose, we ran 1, 000 simulations of 10, 000
periods15 with the empty graph as initial condition and with γ = β = 1, δ = 0.7
and c = 0.1. Nodes degree distribution is presented in Figure 1. One can observe
that the distribution peaks at 6 neighbors, being slightly asymmetric. It is to be
noticed that no agent has less that four neighbors: this is because establishing
direct links with geographically close agents is weakly costly. In the meantime,
there is no agent having more than eight neighbors because no-one is intending
to support the high costs of many direct links. The network self-organizes itself
in a shape which has some in common with regular networks. One may observe
in the descriptive statistics obtained on such distribution (presented in Table
1 in the Appendix) that the cliquishness coefficient c(g) is quite high: nearly
as high as the one of the double ring g2◦. More, these clustered networks are
correlated to the geographic metric: the average geographic distance between

14This simplification is close to the one introduced by Johnson and Gilles (2000) in the “line
world” case.
15Time series analyses conduced over more than 100.000 periods showed that the process has

nearly allways converged on a given pairwise stable state after 10.000 periods. For evidence
and details see a companion paper Carayol and Roux (2003b).
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connected pairs of agents is quite small (D(g) ' 2.5). However, the network
departs from such regular structure in that the average path length is singularly
lower than for the single ring (1.84 < d(g◦) ' 5.26).

Degree distribution

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Figure 1. The nodes degree distribution (mean-max-min) in the simple
collective innovation model (with 1000 experiments, 20 agents, 10, 000 periods).

In order to provide a better understanding of these results, we represent
in Figure 2 below two networks structures selected in the long run. The first
structure is obtained with our model whereas the second is obtained with the
Simple Connections model of Jackson and Wolinski (1996), that is both without
preferential meeting and without link costs increasing with geographic distance.
It should be noticed that both networks are pairwise stable for their respective
payoffs function. The left graph clearly exhibits small world features: high
clusterization while some distant connections remain. How such stable small
world has been selected from the empty network is presented in the appendix
(Figures 6, 7 and Table 2).
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Figure 2. Two typical selected networks after 10 , 000 periods respectively with
(left graph) and without (right graph) preferential meeting and geo link costs.

4.2. How the limit distribution varies with delta?

In the following, we study how the limit distribution varies with the decay
parameter δ. To do so we performed a new set of experiments of 10, 000 periods,
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but now we perform 50 experiments for each small increment of δ over its value
space (]0, 1[). These results are exposed in Figure 1. We find that the average
efficiency increases with δ. Average neighborhoods size exhibits an inverse U-
shape. The average path length decreases from δ = 0.1 until δ = 0.4, then
remains nearly constant and increases for high values of δ (≥ 0.75).Average
cliquishness suddenly increases from zero at δ = 0.2 and reaches his maximum
again very rapidly for δ = 0.35. Then it decreases slowly and stabilises until
δ = 0.75, from where it goes down to 0 when δ is close to 1. Then it decreases
slowly and stabilises until δ = 0.75, from where it goes down to 0 when δ is
close to 1. Geographic correlation index increases until δ = 0.5 and decreases
from δ = 0.8. Finally, we surprisingly observe that the more δ the more the
instability of the graph: activity (creation plus deletion) increases with δ up to
0.85. The intuition for this result is that the less δ, the less substitute are direct
(close vs. distant) links. These results are exposed in the Figure 3.
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Figure 3. The graph indexes in the simple collective innovation model when
δ ∈ ]0, 1[ varies ( 1000 experiments, 20 agents, 10, 000 periods).

16



The different networks configurations that emerge in the long run are more
easily observed by degree distribution presented in the Figure 4. Therein, we can
(indirectly) observe that the empty graph g∅ is selected when δ ≤ c = 0.1. When
c < δ ≤ 2c the geographic ring g◦ emerges: in this case, all agents are connected
to their two closest neighbors. When δ is 0.3, nearly all agents are connected
to four agents who are likely to be their four closest geographic neighbors. This
situation corresponds to the double geographic ring g2◦. From 0.4 ≤ δ ≤ 0.7,
we observe a very ‘stable’ situation (plateau) characterized by flat maximum
neighborhood sizes which decrease from there. At the very beginning of that
configuration (δ ' 0.35), we already have the weakest average path length while
average cliquishness is still close to its maximum (cf. Figure 3). Such a situation
presents many similarities with the small world network structure. While the
‘plateau’ configuration is exposed in the first graph of Figure 2, the other typical
ones may be found in Figure 5.
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Figure 4. The limit degree distribution in the simple collective innovation
model when δ ∈ ]0, 1[ varies ( 1000 experiments, 20 agents, 10, 000 periods).
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Figure 5. Limit typical stable networks selected by the stochastic process in
the simple collective innovation model (with 20 agents, 10, 000 periods). The
first network (simple ring g◦) has been obtained for δ = 0.1; the second
network (double ring g2◦) has been obtained for δ = 0.3; the third network
(small world) has been obtained for δ = 0.35; the last network has been

obtained for a high value of delta δ = 0.98.

5. Conclusion

In this paper, we examined a dynamic stochastic process of network forma-
tion following the contribution of Jackson and Watts (2001) who introduced a
dynamic stochastic process in the initial model of network formation proposed
by Jackson and Wolinski (1996). In our network based model of ‘collective in-
novation’, agents benefit from knowledge flows by communicating with agents
with whom they are directly or indirectly connected. To examine the selected
innovation networks, we studied the characteristics of the long term selected
graphs, without limiting our attention to some typical structures (the empty
graph, the star or the complete network). We made use of several statisti-
cal indexes to capture interesting features of the graphs (average path length,
clustering coefficient, node degree distribution, etc.). We studied the stabil-
ity against noise (error probability) of the graphs selected and also computed
their efficiency. We also introduced heterogenous cost of linking and a pref-
erential meeting rule governing the dynamic process of links formation, which
consisted in weighting the meeting probability between any two agents by the
inverse of their relational and geographic distance. The results concerned the
set of stochastically stable networks selected. For different numerical values of
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the knowledge transferability parameter (decay parameter δ), we described the
different network architectures that are emerging in the long run.

These results may contribute to shed a new light on the issue of networks
formation which proves to be crucial for the distributed innovation phenom-
enon. We showed that when the transferability of knowledge is low, networks
tend to be locally clustered. Increasing slightly the transferability of knowl-
edge increases the density of local networks. Increasing again slightly that value
stimulates the emergence of distant connections. This last result consists in com-
puting the critical values of the decay in knowledge spillover for which pairwise
stable small worlds networks are dynamically selected.
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Appendix

mean median max min var
Av efficiency: π 8,70 8,70 8,87 8,57 0,00
Var efficiency: var(π) 27353 27344 85943 28412 26560
Av nbr neighbors: η(g) 5,67 5,70 6,20 5,3 0,03
Min nbr neighbors: min ηj(g) 4,04 4,00 5 4 0,04
Max nbr neighbors: max ηi(g) 7,06 7 8 6 0,17
Range neighbors: R(g) 3,02 3 4 1 0,22
Unequal connections: u(g) 1,84 1,82 3,21 0,55 0,21
Av path length: d (g) 1,84 1,84 1,94 1,69 0,00
Av cliquishness: c (g) 0,042 0,042 0,053 0,03 0,00
Geo correlation: D(g) 2,47 2,46 2,77 2,26 0,01
Activity 116,15 115 171,78 78 218,1

Table 1. Some descriptive statistics on the graph indexes computed for the
limit graph distribution in the collective innovation model.
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Figure 6. An example of stable network formation in the collective innovation
model.
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Figure 7. The degree distribution of the network presented in Figure 6.

Time Efficiency Nbr links Creations Deletions Errors Pairwise
stability

0 0 0 0 0 0 0
10 15,05 9 9 0 0 0
20 34,09 15 15 0 0 0
30 84,59 21 21 0 1 0
40 115,35 25 25 0 2 0
50 136,94 31 31 0 2 0
100 162,81 48 49 1 5 0
200 169,43 54 62 8 6 0
500 171,96 58 79 21 6 0
1000 173,13 57 84 27 6 0
2000 172,81 55 86 31 6 1
5000 172,81 55 86 31 6 1
10.000 173,31 56 91 35 7 1

Table 2. Some graph indexes of the network presented in Figure 6.
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